SWOT Analysis of WUE Options for Infield Irrigation Systems

<table>
<thead>
<tr>
<th>Options</th>
<th>Strengths</th>
<th>Weaknesses</th>
<th>Opportunities</th>
<th>Threats</th>
</tr>
</thead>
</table>
| Conversion to Centre Pivot or Lateral Move | • Precise application of water
• Reduced labour requirements
• Flexibility in farming system options; potential to integrate other Water Use Efficiency practices (e.g. stubble retention); significant benefits for germination | • Energy and pumping costs
• Higher level of skills required to operate and realise water savings
• Capital cost | • Incorporate fertigation
• Reduce offsite impacts
• Expand production area through water savings | • Poor design skills of suppliers
• Requires good water quality
• Low water availability (i.e. stranded asset) |
| Conversion to Drip | • Precise application of water
• Reduced labour requirements
• Flexibility in farming system options; potential to integrate other WUE practices (e.g. stubble retention) | • Energy and pumping costs
• Higher level of skills required to operate and realise water savings
• Maintenance of system
• Very high capital cost | • Incorporate fertigation
• Reduce offsite impacts
• Expand production area through water savings | • Rat strike
• Poor design skills of suppliers
• Requires good water quality
• Low water availability (i.e. stranded asset) |
| Improving system performance for surface irrigation | • Low cost
• Limits changes in infrastructure | • Improvements can be volatile (throughout the season)
• Recommendations can be difficult to implement with existing labour force flexibility | • Implement improvements across the enterprise more rapidly | • Measurement and monitoring phase can be labour intensive
• Control must be more precise when flow rates are decreased (i.e. Potential for decreased performance if cut-off times lapse) |
| Surface system redesign and upgrade | • Low maintenance
• Low energy | • May require significant change to on farm practices to realise gains | • Improve the efficiency of other on farm practices | • Limited opportunities to redesign and develop an existing site |
| Sprinkler upgrades | • Low cost
• Simple improvement | • Not likely to result in a net improvement in the long term (i.e. sprinklers eventually wear out) | • Improve versatility of the machine | • Difficult to determine real gains
• Shifts weakest link to other aspects of the system
• Replacement package must be correctly designed and must meet a need (i.e. system check must be performed beforehand) |
Contact Us
More Profit Per Drop team members:

Graham Harris – Toowoomba
(07) 4688 1559

Nikki Pilcher – St George
(07) 4620 8109

Bec Raymond – Goondiwindi
(07) 4671 6711

Jenelle Hare – Dalby
(07) 4669 0825

Lance Pendergast – Emerald
(07) 4983 7416

Mary Philp – Toowoomba
(07) 4688 1211

Further Information
For a full copy of An appraisal to Identify and Detail Technology for Improving Water Use Efficiency in Irrigation in the Queensland Murray Darling Basin go to:

Disclaimer
This article has been adapted by the State of Queensland as an information source only. The State of Queensland makes no statements, representations, or warranties about the accuracy or completeness of, and you should not rely on, any information contained in this product. Any reference to any specific organisation, product or service does not constitute or imply its endorsement or recommendation by the State of Queensland. The Queensland Government disclaims all responsibility and all liability (including, without limitation, liability in negligence) for all expenses, losses, damages and costs you might incur as a result of the information being inaccurate or incomplete in any way, and for any reason.

©The State of Queensland, Department of Employment, Economic Development and Innovation 2011. Copyright protects this material, inquiries should be addressed to copyright@deedi.qld.gov.au (telephone +61 7 3404 6999)